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POD 23: MC Simulation of Taylor Dispersion in AF4

We construct a simple Monte Carlo simulation of dispersion in a asymmetric flow field flow fractionation device. The distribution is
exponential in y, and there is a simple shear flow in the x direction. We add in a second species to see separation based on the
diffusivity.

n= 1000;

Dastar = 1.5; % A second species with a different diffusivity.
% We distribute them randomly.

y = -log(rand(n,1));

X = zeros(n,1l);

ya = -Dastar*log(rand(n,1l));
xa = zeros(n,l);

dt = 0.001; %Our time step

tquit = 500;
t = [dt:dt:tquit]'; %Our times

ux = @(y) y; %our velocity profile

varx = zeros(l/dt,l); %we keep track of the variance.
varxa = zeros(1l/dt,1); %we keep track of the variance.

for i=l:tquit/dt-1
dxl = ux(y);
y =y - dt+ randn(n,1)*(2*dt)".5; %Updating y
y = abs(y); %Reflection from the accumulating wall
dx2 = ux(y):;
X = x + (dx1+dx2)/2*dt; %We update the velocity

varx(i) = var(x);
% Now we repeat for the second type of particle.

dxal = ux(ya);

ya = ya - dt+ randn(n,l)*(2*Dastar*dt)”.5;

ya = abs(ya);

dxa2 = ux(ya);

xa = xa + (dxal+dxa2)/2*dt; %We update the velocity

varxa(i) = var(xa);

% We plot up the distributions every thousand iterations.
if 1/1000==round(i/1000)

figure(1l)

plot(x,y, ' 'or',xa,ya,'ob")

xlabel('x")

ylabel('y")

title(['x-y distribution at t = ',num2str(t(i))])



drawnow

end
end
figure(2)
plot(t(l:i),varx(l:i), 'r',t(l:1i),varxa(l:i),'b")
xlabel('t")

ylabel('x variance')
title('variance in the x direction')
legend( 'unit diffusivity',['diffusivity = ',num2str(Dastar)])

figure(3)

histogram([x,xa])

xlabel('x")

ylabel (' frequency')

title(['Particle Locations at t = ',num2str(tquit)])
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Conclusion

As can be seen, the variance of the distribution with the higher diffusivity is much larger (going as D*3). This actually degrades the
separation significantly requiring a greater simulation time for complete separation. The scalings are correct, however. There is also
considerable skewness to the distributions resulting from the shear flow.
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