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The Nusselt-Graetz Problem: Constant Temperature at the Wall

We solve the Sturm-Liouville problem for constant temperature at the wall for laminar flow through a circular tube.
The eigenvalue problem for the decaying solution is

(0cy")' + lambda*2*r*(1-r*2)*y = 0

y'(0)=0;y(1)=0

The asymptotic solution at large z is just Tinf = 1. Thus, the initial value for the Sturm-Liouville expansion is just -1,

Solving the problem we get:

p = @(x) x;

q = @(x) zeros(size(x)):;
@(x) 2*x.*(1-x."2);
be = [0,1,1,0];

]
I

n = 100; %The number of points we would like (the number of intervals)
[lambda, eigenvecs] = slsolve(p,q,w,bc,n);
Tinf =1

% And that's it!

Tinf =

Eigenvalues, Eigenvectors, and Coefficients

We are interested in the lead eigenvalues, coefficients, and eigenvectors. We just look at the first five:

firsteigenvecs = lambda(l:5)
% And we calculate the coefficients using the Trapezoidal Rule:

r = [0:1/n:1]";



% The Trapezoidal Rule weights:
weights = ones(1l,n+1);
weights(1l) = 0.5;

weights(n+l) = 0.5;
weights=weights/n;

a = zeros(length(lambda),l);

for i = l:length(lambda)
numerator = -weights*(w(r).*Tinf.*eigenvecs(:,i));
denominator = weights*(w(r).*eigenvecs(:,i)."2);
a(i) = numerator/denominator;

end

firstcoefficients = a(1l:5)

% And we plot the first five eigenfunctions:
figure(1l)

plot(r,eigenvecs(:,1:5))

xlabel('x")

ylabel('y')

title('First Five Eigenfunctions')

legend('n = 1','n=2','n=3",'n=4",'n=25")
grid on

firsteigenvecs =

3.6565
22.2980
56.9188

107.4735
173.9001

firstcoefficients =

-1.4765
0.8067
-0.5885
0.4768
-0.4043
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Flow Averaged Temperature and Heat Flux

To obtain the heat transfer coefficient we need to know the flow averaged temperature and the heat flux at the wall.

z = [0.0005:.001:2];
Tavg = zeros(size(z)); %We initialize the array
g = zeros(size(z));
T zeros(size(r));
dr = 1/n;
for j = 1l:length(z)
for i=l:length(r)
T(i) = Tinf + sum(a.*exp(-lambda*z(j)).*eigenvecs(i,:)"');
end
Tavg(j) = weights*(2*(1l-r."2).*2,.*r.*T);
a(j) = (1.5*T(end)-2*T(end-1)+0.5*T(end-2))/dr;
end

figure(2)

plot(z,Tavyg,z,q)

xlabel('dimensionless axial position')

ylabel('flow averaged temperature, wall derivative')

legend('flow averaged temperature', 'wall derivative')
axis([0 2 0 2])

grid on
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Temperature Profile at Various Times

We can also plot up the temperature distribution for specific z locations. You will note the issue near the origin at very small z. This is
known as the Gibbs ringing phenomenon and is well known in signal processing.

zplot = [0.0002,.05,.1,.2,.4,.8]";

tprofile = zeros(length(r),length(zplot));
for j = l:length(zplot)
for i=1l:length(r)
tprofile(i,j) = Tinf + sum(a.*exp(-lambda*zplot(j)).*eigenvecs(i,:)');
end
end
figure(3)
plot(r,tprofile)
legend(num2str(zplot))
xlabel('z")
ylabel( ' Temperature')
title( ' Temperature Distribution at Different Axial Positions')
grid on
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Heat Transfer Coefficient

Finally, we are interested in how the heat transfer coefficient varies with axial position. The dimensionless value is the ratio of the heat
flux to the difference between the bulk and wall temperatures. So:

h = g./(1 - Tavg);
Nu = 2*h; %Convert to conventional definition hD/k

zstar = z/4; %Convert to conventional z/(UD"2/alpha)

figure(4)

plot(zstar,Nu, zstar,48/11*ones(size(zstar)),'--k')
axis([0,.1,2,71])

xlabel('z/(UD"2/alpha)’)

ylabel('Nu = hD/k")

legend('transient solution','constant flux asymptotic solution')
grid on
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Conclusion

The initial heat transfer coefficient is larger than the asymptotic value due to the small thickness of the developing boundary layer.
After a short distance, however, the asymptotic result is reached. Both the heat transfer coefficient and the difference between wall
and bulk temperature vanish, but the ratio is constant (and could be determined just from the lead eigenfunction). The heat transfer
coefficient is slightly less than that obtained from the constant wall heat flux boundary condition. This is the usual value used in
correlations for the Nusselt number.
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