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Problem of the Day 08: Neumann Stability - Slab with heat generation

In this problem we compare a finite difference marching solution to the exact resuit for a slab with uniform heat generation. We are
interested in the temperature at the bottom (insulated wall) as a function of time. The problem admits a nice closed form SL solution,
s0 this gives us a point of comparison for the numerical result. We look at time spacings just above and below the Neumann stability
criterion.

Contents

= The exact solution:
= The marching solution below the Neumann condition

= Now we increase dt by just a bit...

The exact solution:

We have the Sturm Liouville solution:

tsl = [0:.001:2];
n =[1:100]'; % we use 100 eigenvalues (overkill)
sigma = (n-.5)*pi; % the eigenvalues

Tbhotsl = 1/2 + sum(2*(-1)."n./sigma.”3.*exp(-sigma.”2*tsl));

figure(1l)

plot(tsl,Tbotsl)

xlabel('t")

ylabel('T|y = 0")
title('Temperature at the bottom')
grid on
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The marching solution below the Neumann condition

We use the center difference Euler method marching solution. We choose a discretization of n in the spatial domain and thus have a
time discretization of less than 0.5/n"2 for stability:

n = 20
dy = 1/n;

a = (diag(ones(n,l),-1)+diag(ones(n,1l),1l)-2*diag(ones(n+1,1)))/dy"2;

format short e
dt = 0.50*dy"2 %The maximum dt for stability

tkeep = [0:dt:3]; %The times we keep
Tbot = zeros(size(tkeep)); %We initialize the bottom temperature array

Thot(1l) = 0;
T = zeros(n+l,1); %our initial temperature distribution

for i = 2:length(tkeep)
T=T+dt * (a * T+ 1); $We add in the source
T(n+l) = 0; %The upper BC
T(1l) = 4/3*T(2) - 1/3*T(3); %The lower BC
Tbhot(i) = T(1l); %We keep the bottom temperature
end

figure(1)

hold on

plot(tkeep,Tbot, '--")

hold off

legend('Sturm-Liouville Solution', 'Marching Solution')
axis([0 2 0 .5])
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Now we increase dt by just a bit...

dt = 0.51*dy"2 %just above stability!
format short

Tbotnew = zeros(size(tkeep)); %We initialize the bottom temperature array

Tbotnew(1l) = 0;
T = zeros(n+l,1); %our initial temperature distribution

for i 2:1length(tkeep)
T T+ dt * (a * T+ 1); %We add in the source
T(n+l) = 0; %The upper BC
T(1l) = 4/3*T(2) - 1/3*T(3); %The lower BC
Tbotnew(i) = T(1l); %We keep the bottom temperature

end

figure(1l)

hold on

plot(tkeep,Tbotnew, ': ")

hold off

legend( 'Sturm-Liouville Solution', 'Marching Solution', 'Unstable Solution')
axis([0 2 0 .5])
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