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Solution to Fin Radiation Problem

In this script we solve the temperature distribution in a fin where the heat transfer from the fin is in the form of radiation. We assume
that there is a specified heat flux at the base of the fin. Because of the strong dependence of the radiative heat flux on temperature
the solution is very dependent on the initial condition - the temperature at z = 0. We thus use an iterative solution, progressing to
larger values of z to achieve convergence.

global zlimpass

zlimpass = 1;
x = 1;
for i = 1:30
x = fzero('miss',x);
zlimpass = zlimpass*1.1;
end
initialtemp

[}
w

initialtemp =

1.2011
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Conclusion

The final expression converges to the initial condition (temperature) of 1.2011, and the temperature of the fin drops to 0.5 at a
distance of 2.2, both nicely O(1) quantities. The decrease in temperature slows drastically at larger z because of the T*4 dependence.
At this position the dimensionless heat flux is only -0.11, which means that 89% of the total heat loss occurs for z less than 2.2. Thus,
the rest of the fin is of little use: the optimal fin length should be about 1 - comprising 74% of the total heat loss. If we include back
radiation (which becomes increasingly significant as the fin temperature drops) this further shortens the optimal length of the fin.

Comparison to Exact Solution

It turns out that you -can- solve this problem analytically: multiplying both sides by dT/dz you can get a perfect differential on both
sides of the equation. Integrating and applying the boundary conditions you get a simple analytic solution. The deviation from the
numerical solution is very small for small z, with the temperature deviating slightly at large z. We can add this to our figure:

T = @(z) (3*z/10".5 + (2/5)"(3/10))."(-2/3)
dTdz = @(z) -(2/5)".5*T(z)."2.5

z = [0:.01l:zlimpass];

figure(1l)

hold on

plot(z,T(z),'k',z,dTdz(z),"'g")

hold off

axis([0 10 -1 1.5])
legend( 'numerical solution', 'heat flux', 'exact temp', 'exact flux')

function_handle with value:



@(2z)(3*2/10".5+(2/5)"(3/10))."(-2/3)

drdz =
function_handle with value:

@(z)-(2/5)".5*T(z)."2.5
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Miss.m function

The function called by the program is given below. Uncomment it and save it in a file named miss.m

% function out = miss(x)

% %This function takes in the initial value of the temperature at z = 0,

% %performs the integration to zlimpass (a global variable) and returns the

% %value of the derivative at zlimpass. We then use this with a rootfinder

% %to get the correct value for x.

%

% global zlimpass

%

% fdot = @(z,f) [sign(f(l))*f(2);£(1)"4]; %The derivatives

% % Note that we have added a little "fix" to fdot, as things go haywire if

% % the temperature becomes negative as can happen if you have the wrong

% % initial condition. Flipping the sign of the derivative forces stability
% % of the differential equation for these conditions: it is just a numerical
% % fix dealing with errors caused by the incorrect IC guess.

%

% [zout,fout] = ode23(fdot,[0 zlimpass],[x,-11);

% out = fout(end,2); % we require the temperature derivative to be zero at zlimpass.



% We add in a little graphics to see how we are doing.
figure(1l)

plot(zout, fout)

legend( 'temperature', 'heat flux')

xlabel('z")

ylabel('temperature')

grid on

zZoom on
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drawnow
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