
CBE 30356 Transport II 
Problem Set 11 

Due via Gradescope, 11:55 PM 4/20/23 
 
1). You are assigned the task of stripping out trichloroethylene from groundwater (55°F) 
using an air-water stripping tower.  Your tower is loaded with 1 inch metal Raschig 
Rings, and is to be operated at a water superficial flow rate of 26 gpm/ft2 and air 
superficial flow rate of 48 cfm/ft2.   
 
a. To calculate mass transfer coefficients you will need to get the diffusivities of 
trichloroethylene in both water and air (at 55°F).  This can be done using a number of 
empirical correlations, and a nice summary specific to trichloroethylene in air and water 
is found on p. 7 & 8 of the reference:  
 
https://dtsc.ca.gov/wp-content/uploads/sites/31/2018/01/tce.pdf 
 
Note that while this is a government publication, it actually has an error in it!  For their 
diffusivity in water expression they forgot to include the dependence of viscosity on 
temperature – not huge, but not insignificant either!  When using this correlation, be 
sure to also use the correct viscosity at our operating temperature! 
 
b. For these conditions, calculate kL, kG, and Ko

La.  You will find table 4 on p. 75 of 
Staudinger’s thesis to be of use to get the Henry’s Law coefficient.  A typical 
surface/volume ratio for this size Raschig Ring is 216 m2/m3. 
 
c. It is desired to use the above conditions to reduce the concentration of 
trichloroethylene from 1 ppmw to 10 ppbw.  How tall should the tower be for these 
flow rates? 
 
2. Consider an equimolar counter-diffusion / first order reaction Thiele modulus 
problem such as was covered in class.  If the reaction is fast (e.g., you are severely 
diffusion limited) it is more appropriate to solve the problem in the boundary layer 
limit: We define y = R – r and examine reaction and diffusion in this “flat Earth” limit.  
Show that the problem formulated in this way is just a simple exponential for the 
concentration distribution, and solve for the flux at the surface and resulting 
effectiveness factor.  Compare your result to the asymptotic limit derived in the notes 
and show that they agree. 
 
3. The Taylor dispersivity limit is reached only after solute molecules have a chance to 
diffuse across streamlines so that they sample the different convective velocities.  In this 
problem we examine this transition.  While this can be done analytically, the problem is 
more than a bit messy – so we will do it using a MC simulation. 
 
a. Simulate the dispersion of an initially focused solute slug in a circular tube of radius a 
with diffusivity D and average velocity U.  After rendering the problem dimensionless, 
show (via simulation!) that at long times the variance grows as 2Kt where K = 1/48 
U2a2/D (e.g., Taylor’s classic result). 
 



b. Subtracting this asymptote off, determine the (dimensionless) time (or distance, same 
thing!) with which the steady state is achieved. 
 
For this problem it is useful to do your random walk diffusity in both the x and y 
directions (e.g., Cartesian coordinates), where r = (x2+y2)1/2.  Reflection at the tube wall 
is pretty simple: your new radius would be rnew = min(r,2-r), and your new x and y 
positions would be scaled by the new radius (e.g., x = x*rnew/r).  It’s just a couple of 
lines of code.  As was done in the class simulations, use TR to get the displacement in 
the flow direction.  Ignore diffusion in the axial direction, as that would be very small at 
large Pe.  Your initial distribution can be set up in a square box (using the rand 
command to get it uniform) and then you just trim out the tracers which fall outside the 
circle of radius 1. 


