
A Rainbow of Skittles

Materials

1. A white or glass plate, slightly depressed in the center

2. A bag of Skittles

3. A pushpin and a bit of carpet tape

4. A 400ml beaker or crystallizing dish

5. Distilled water

A classic children’s demonstration is the pretty pattern that you can form from brightly 
colored Skittles dissolving on a plate.  There are innumerable YouTube videos of the 
phenomenon.  The procedure is simple: arrange the Skittles around the edges of the 
plate (with an appropriate color pattern) and then slowly add water to the center of the 
plate.  As the water reaches the Skittles, they begin to dissolve, releasing their sugar and 
dye into the liquid.  These form bands that flow toward the center of the plate.

The explanation of the effect is usually miss-described on the web as being solely due to 
diffusion.  In fact, for this problem diffusion is principally important only in a thin 
boundary layer adjacent to the candies.  The correct explanation is that as the candies 
dissolve, releasing sugar into the water, the local density increases.  This produces a 
buoyancy driven flow both around the candies and towards the center of the plate.  The 
dye (which is at a concentration too low to affect the buoyancy) simply travels along 
with the sugar laden fluid.  The bands remain separate because diffusion over the 
length scale of the band width is very slow: diffusion only plays a role over very short 
length scales in this problem.

There are a number of different demonstrations which can be done to illustrate this 
effect.  Many plates are actually slightly concave up in the center.  For such a plate the 
pattern initially forms regularly (in the downward sloped region) and then as it reaches 
near the center becomes unstable (and the motion greatly slows down).  If the plate is 
inverted, the center is now convex and the pattern remains regular to the center and 
proceeds much more rapidly.  A flat dish (such as a petri dish, below) also yields a 
regular pattern.  A purely diffusive process would be relatively unaffected by such 
slight changes in geometry.  

The dynamics of the dissolution process can be imaged by looking at a single skittle 
after immersion.  This is easily done by pinning a Skittle with a pushpin and attaching it 
to the bottom of a crystallizing dish (useful because of the larger aspect ratio and flat 
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bottom) with a bit of carpet tape.  Although it does not appear to greatly affect the 
dissolution process, fracture of the hard shell can be avoided by briefly heating the tip 
of the pushpin in a candle flame before insertion.  The pinned Skittle is covered with an 
inverted small beaker, distilled water is added to the crystallizing dish sufficient to 
cover the candy, and the small beaker is removed.  This procedure is desirable to allow 
the initial swirls from adding the water to damp out as much as possible.  The 
dissolving layer is imaged from the side showing the flow of the dye around the Skittle, 
followed by the clear sugar solution after the dye coat is removed.  The dissolving clear 
sugar is visible via refractive index variations showing the flow pattern.  Distilled water 
is used as tap water (or at least that at Notre Dame) causes micro bubbles to form once 
the sugar coat is breached.

Quantitative calculations are also of use.  The rate with which the Skittles dissolve is 
quite closely related to the classic problem of a dissolving spherical particle, important 
in pharmaceutical applications among others (e.g., Assunção et al., 2024).  If the 
dissolution at the surface is “fast” (not kinetically limited), the solute is dilute, and the 
viscosity of the fluid is not significantly affected by the dissolving material, then this 
problem is actually identical to heat transfer from a heated sphere into a quiescent fluid.  
In that problem the Nusselt number (dimensionless heat transfer coefficient) is a 
function of the Rayleigh number and the Prandtl number.  For mass transfer the 
Sherwood number (dimensionless mass transfer coefficient) is the same function of the 

Rayleigh number analog  (where the thermal expansion driving force 

 is replaced by  (the difference between the solution density at the surface from 
that far away) and the thermal diffusivity is replaced by the molecular diffusivity Ds) 
and the Schmidt number  rather than the Prandtl number (Churchill, 1983).  

Ras =
D3gΔρ

Dsμ
ρβΔT Δρ

Sc = ν /Ds
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Application of this to the dissolution of sugar is complicated by the very high solubility 
of sugar in water (about 200g of sugar in 100g of water), so it is hardly dilute.  Finite 
concentration effects have been shown to modify mass transfer rates due to convection 
normal to the surface in the boundary layer (e.g., Acrivos, 1962).  At high concentrations 
the viscosity is greatly increased as well, with the diffusivity similarly decreasing.  For 
purposes of estimation, we shall take the surface concentration to be about 20% (the 
point where viscosity and diffusivity begin to diverge significantly from the dilute 
result) yielding a density difference at the surface of 0.08 g/cm3.  The diffusivity of 
sugar in water is 5x10-6 cm2/s, so the Schmidt number is about 2000 for a dilute 
solution.  Since the laminar momentum and mass transfer boundary layers scale as the 
square root of Sc, the velocity profile is some 40 times thicker than the solute profile - 
most of the convected fluid is actually sugar and dye free for laminar flow.  For a candy 
with diameter of 1cm, the modified Rayleigh number is approximately 109, close to the 
point where the flow transitions from laminar to turbulent (e.g., Maestre, et al., 2021).  
Inserting these values into the Churchill correlation for the Sherwood number yields Sh 
~ 102, so the steady-state mass transfer rate is some 50 times what would be expected 
from diffusion alone.

Quantitative application to dissolving Skittles is even more challenging.  The candy is 
an oblate spheroid with major diameter of 1.27cm and minor diameter of 0.85cm.  It 
consists of a thin hard sugar shell (approximately 700µm thick) surrounding the chewy 
core.  The dye itself is confined to an even thinner layer on the surface of the shell, and 
there is a further insoluble protective coating on top of this on which the “S” is printed.  

Sh =
kmD
Ds

= 2 +
0.589 [ D3gΔρ

Ds μ ]
1/4

(1 + ( 0.43
Sc )

9/16)
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The compositions and thicknesses of these layers are unfortunately proprietary.  If a 
Skittle is simply dropped into a beaker of water, the dyed layer appears to dissolve 
away in about a minute, with a visible downward flow at the base of the candy and the 
removed dye confined to a thin layer on the bottom of the beaker.  

More specific information about the dissolution process may be obtained from close 
examination of a Skittle supported by a pushpin away from the bottom of the 
crystallizing dish.  Within 6 seconds of immersion the protective outer coat is disrupted, 
and after about 30s the insoluble coat has completely sloughed off.  This is followed by 
dispersion of the dye and dissolution of the hard sugar shell.  From images it is 
apparent that the Rayleigh number is indeed high enough to induce fluid instabilities in 
the wake region.  The observed behavior and pattern is remarkably similar to studies of 
boundary layer separation and instability for natural convection around spheres (e.g., 
Schütz, 1963; Kitamura et al., 2015; and Lee & Chung, 2017).  As in these experiments, at 
high Rayleigh numbers the boundary layer separates below the equator and the 
separated layer breaks into vortices which significantly increase the mass transfer 
coefficient in the wake region.  For the Skittles, the time for the dye to locally vanish is 
roughly inversely proportional to the local mass transfer coefficient.  Examination of the 
images suggests that the mass transfer coefficient is highest in the wake region and a 
minimum (longest dye persistence) near the separation region just below the equator in 
agreement with the measurements of Schütz at comparable Ra.  While complicated by 
the sloughing of the protective coat, it appears that the ratio of the mass transfer 
coefficient in the wake region to that just below the equator is approximately a factor of 
2.  Comparison of this ratio to the measurements of Schütz for mass transfer from a 
sphere suggests that the equivalent Rayleigh number is approximately 1.5x109.

The separated sheet of dense, sugar laden fluid is unstable to a transverse disturbance 
with a wavelength of approximately 500µm.  These vortices then form rivulets which 
further interact in the wake region and give rise to the higher mass transfer rate at the 
bottom (where the dye first disappears).  Although more difficult to see, the rivulets 
persist in number and location even after the dye coat has completely vanished.  While 
the rivulet formation mechanism and wavelength selection is less well described in the 
literature, it appears that the breakup of the sheet is a gravitational Rayleigh-Taylor type 
instability (e.g., Limat et al., 1992) rather than a Kelvin-Helmholtz shear instability, as 
that would lead to a vorticity axis perpendicular to the flow.  The pattern formed closely 
matches what was observed by Kitamura et al. (2015) for heat transfer in water at a 
Rayleigh number of 1.7x109 (e.g., Figure 2.d of that paper).  It is remarkable that this 
simple demonstration can qualitatively (and semi-quantitatively) capture such a 
complex phenomenon.  In the class demonstration the dissolution of the Skittle is 
projected onto the screen and the observed behavior is compared to the flow pattern in 
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Figure 2 of Kitamura and the dye disappearance rate to the spatially dependent 
Sherwood number measurements in Figure 6 of Schütz.

Whether the observed flow of the dye away from the Skittles on a plate is solely due to 
its own gravitational source of momentum or whether the subsequently dissolving 
sugar applies an additional stress to the surface of the dyed layer, dragging it towards 
the center of the plate or simply displaces it, is unclear as both processes likely play a 
role.  In either case, however, the dye motion and pattern formation are primarily due to 
gravitationally driven flow rather than molecular diffusion as is often asserted.  
Diffusion is unimportant on the length scale of the Skittles for the short duration of the 
phenomenon.
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