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CBE 30355 Transport I Midterm Exam

October 16, 2025

Solution: Momentum balance in the wake-traverse
experiment

Assumptions and conventions

Steady, incompressible flow of density p.

Flow is two-dimensional in the x-y plane; quantities given are per unit length in the
z-direction (into the page). We will therefore quote forces as F/L.

Inlet (left) velocity is uniform U across the channel height 2h. Outlet (right) velocity
is u(y) (non-uniform) for —h <y < h.

Inlet pressure is py (constant on the inlet face); outlet pressure is p, (constant on the
outlet face).

Side (top/bottom) friction and shear on the dashed control-surface walls are neglected.
Body forces (gravity) are neglected in the z-momentum balance.

Define F,,; as the force exerted by the cylinder on the fluid in the positive z-direction.
By Newton’s third law the force exerted by the fluid on the cylinder (drag on the
cylinder) is F' = —F,;. We will present the final expression for F'/L.

Mass (volume) conservation.

Steady incompressible mass conservation (per unit depth) gives
h

U(2h) = / uly) dy.

—h

This expresses that the volumetric flow rate per unit depth at the inlet equals that at
the outlet.

. Integral momentum balance (in words).

For the chosen control volume (dashed box surrounding the cylinder): “The net rate of
r-momentum flux leaving the control volume minus the rate entering equals the sum of
the external forces acting on the fluid inside the control volume in the z-direction.” The
external forces here are pressure forces on the inlet and outlet faces and the mechanical
force the cylinder exerts on the fluid (we neglect wall shear on top/bottom and any
body forces in ). In steady flow the momentum accumulation term is zero.

. Integral expression for the drag per unit length F/L.



Write the integral z-momentum balance for steady flow. Sum of forces on the control
volume in the z-direction equals the net outflow of z-momentum:

S

Evaluate each term (unit depth into the page so dA = dy):

u2dA—/ UQdA).
Ain

out

o Pressure force on the inlet face (left): the external pressure py pushes the fluid to
the right, giving a positive contribution

Fp,in = Po (2h) .

 Pressure force on the outlet face (right): the external pressure p, acts on the right
face pushing left, so its contribution to the sum-of-forces (positive to the right) is

Fp,out = _pe(Qh)

 Force of the cylinder on the fluid (unknown): Fi, (positive to the right by sign
convention).

o No other z-directed forces (top/bottom wall shear neglected).

e Momentum flux terms:
h
/ u2dA:/ u(y)? dy, / U?dA = U?(2h).
Aout —h Ain
Thus the momentum balance becomes

h
Po(2h) — pe(2h) + Fopy = p </_hu(y)2 dy — 2h U2) .

Solve for Fry:

h
Foi=p (/_hu(y)2dy—2hU2> —2h (po —pe)-

Recall the drag on the cylinder (the force exerted by the fluid on the cylinder) is
F = —F,,. Therefore the drag per unit length is

F

7 = 2h(po —pe) +p(2hU2 - /_}LU(Wdy) :

Remarks

o The first term, 2h(py — pe), is the net pressure contribution (inlet minus outlet)
acting on the control-volume faces. The second term is the difference in streamwise
momentum flux (inlet minus outlet).
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» Using mass conservation 2h U = ffh u(y) dy one can manipulate the momentum-
flux term if desired, but in general the nonuniform u(y) is left as the integral
shown above.

« Sign interpretation: with the boxed convention F/L is the force of the fluid on
the cylinder in the positive z-direction. If F//L > 0 the fluid pushes the cylinder
downstream; typically for a fixed cylinder in a rightward flow the drag resisting
the flow corresponds to a negative z-force on the fluid so the fluid-on-cylinder
drag (as commonly reported) will have the opposite sign depending on the chosen
sign convention.

2 Flow Resistance in Membranes: Unidirectional Flows

Assumptions. Steady, incompressible, axisymmetric, fully-developed laminar flow in straight
cylindrical pores of length (membrane thickness) h. Entrance/exit and pore-pore interac-
tion effects are neglected. Fluid viscosity is u (subscripted where needed). The membrane
porosity (open area fraction) is e.

a. Flow through a single cylindrical pore (from Navier—Stokes).

Start from the z-momentum equation in cylindrical coordinates. Under the stated
assumptions (steady, axisymmetric, no swirl, fully developed 0/9z = 0 for u, except
via pressure gradient, and negligible body forces)

dp 1d( du,
O—sz*“[m(’”drﬂ’

where wu,(r) is the axial velocity and dp/dz is constant along the pore.

Define G = 19 (constant). Multiply by r and integrate:

— pdz
d ( du, du, Gr?
dr(TdT)_GT = =y + .

Regularity at » = 0 requires C; = 0, so

du, g
dr 2
Integrate once more:
Gr?
uy(r) = —+Cy
4
No-slip at the wall u,(a) = 0 gives
Ga?
“=
hence o 1 d
b a oy L AP o o
i) =00 =) = L - )



If the pressure drop across a pore of length h is Ap = pi, — pout, then dp/dz ~ —Ap/h,
and the axial profile may be written as the familiar Poiseuille form

Ap

_ 2 2
_4,uh(a 7).

u,(r)

The volumetric flow through one pore is

21 ra A a
Qpore = / / u,(r)rdrdd = o =L (a® —r®)rdr
o Jo

4ph Jo
Ap [a‘l] ma* Ap
=2 |1

T8 b
Thus the single-pore conductance scales with a* (Hagen—Poiseuille law).

. Permeability for two pore sizes occupying specified surface fractions.

Let the membrane open-area fraction in pore class ¢ be ¢; (i = 1,2), so €; + €3 = €.
The number of pores of class ¢ per unit membrane area is

€
n;, = .
ma?
. mai Ap L .
Each pore of class 7 has flow Qporei = g L o so the contribution to the superficial
1
velocity (flow per unit membrane area) from class ¢ is
Qi €; 7'('@4 Ap eiaz
Uizizni ore,i — : L — = . .
A pore, wa? 8u h  8uh P
Summing the two classes,
Ap
U = S;Th (ela% + 62@2).

The problem statement defines permeability K via

Q .. _Ap
A_U_KM.

Comparing with the expression above yields

K = 81h (ela% + egag).

This is the desired expression for K (note it scales like €;a?/h and is independent of p
by construction of the chosen normalization).



Special case: equal surface-area occupation. If the two pore classes occupy
equal fractions of the open area, i.e. €, = €3 = €/2, then

€(ai +a3)

K —
16 h

. Fraction of total flow through larger pores when ay, = 2a;.

With equal surface-area occupation (€; = €;) the superficial flux contributed by class
i is proportional to €;a?, so the fraction of total flow going through class 2 (the larger
pores) is

@ B GQCL%
U  ea}+eadd
With €1 = €2 and a9 = 2&1,
Uy a3 (2a1)? 4 4

U _a%—i—a%_a%—k@al)?: 1+4 5
Thus

80% of the total flow passes through the larger pores.

Remarks and limitations.
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e The derivation assumes independent parallel cylindrical conduits. Real membranes

may be tortuous, connected, or have pore-size distributions that violate the simple
area partitioning used here.

Entrance/exit losses, inertia (nonzero Reynolds number), slip, and pore roughness are
neglected; these effects can alter the prefactors and effective scaling.

The strong dependence of single-pore flow on a? (but permeability on a? after area-
weighting) shows large pores disproportionately increase overall membrane permeabil-

1ty.

The Clepsydra of the Ancient Greeks — Solution

Given. Conical bowl with internal cone angle 60 degrees so that the fluid volume and
height are related by

V(h) = gh?’.

Small circular hole at the cone apex of radius Ry (area Ay = mR3). Discharge coefficient A
(accounts for contraction and losses). Gravity g acts downward. Initial volume V; (equiva-
lently initial height Hy via Vo = wH3/9).

We treat the outflow as inertia-dominated (Torricelli type) with losses lumped into A so that
the volumetric outflow is

Q = A Ao \/2gh.
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a. Differential equation for height (inertial scaling).

Mass (volume) conservation for the bowl:

v

-
Differentiating V' = gh?’ gives
av av  n ,dh
- h2 - h2 -
dan 3" @~ 3"

Set this equal to —Q):

Solve for dh/dt. Noting v/h = h'/? and grouping constants, we obtain
@ — _ SAAO\/% h73/2
dt T '
—_—
Co

Thus the governing ODE is

dh 3\ Agy/2
= =—Co T - ;‘/—g — 3\R2\/2g .

b. Non-dimensionalization and characteristic time scale.

Let the initial height be Hy (obtained from Vj by Hy = (9V,/7)'/?). Introduce dimen-
sionless height and time

h t
H* _ — = —
H,' ot
with an as-yet-unspecified characteristic time t.. Substitute h = HyH* into the ODE:
HydH* _
S = —Co(HoH") ™ = —CoHy ™ (1)
t. dr
Choose the characteristic time to remove prefactors on the right:
175/
t. = o
Co
With this choice the dimensionless ODE becomes
dH* _ —(H*>_3/2-

dr

Thus a convenient characteristic drainage time (scale) is

L ]_Ig/2 B ]{g’/2
Oy  3AR:2g°
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c. Solve for the dimensionless drainage time t}.

The dimensionless ODE

dH*
— _(H* -3/2
dr (H)
can be integrated analytically. Multiply both sides by H*3/2? and use
d 5 dH*
& (o2 = 22t
dr ( ) 2 dr
Hence g .
el H* 5/2 = _Z
dr ( ) 2
Integrate from 7 = 0 (when H* = 1) to arbitrary 7:

H*?(r) =1 - 27’.

The drainage (empty) time corresponds to H* — 0, so set the left-hand side to zero
and solve for 7,:

0=1 o == _ 2
= 2Td Td—5.

Thus the dimensionless drainage time is

. 2

The actual drainage time is therefore

HY?

p
tg = tot) = = —0
d ¢ 5 3AR2V2g

(Equivalently one can combine constants and write t; = (2/ 5)H§/ ?/Co.)
d. Numerical design: find hole size for V; =1 L and t; = 5 min with A\ = 0.6.
First compute the initial height Hy from V5 = 1.0 L = 1.0 x 1073 m?:
9V \ /3
Hy = (“) .

™

Numerically,

9(1.0 x 10\ /*
Hy ~ <(X)> ~ (0.1420 m (about 14.2 cm).
m

Rearrange the expression for ¢, to solve for Ry:

L2 P L 2 "
4 5 3AR2V2g 0 53A/2g ta’
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Using tg = 5 min = 300 s, A = 0.6, and g = 9.80665 m/s?,
H, ~ 0.1420248 m,
Ry~ 1128 x 102 m = 1.128 mm.

So the hole radius must be about 1.13 mm (equivalently diameter about 2.26 mm) to
achieve a b-minute drainage time with the given discharge coefficient.

Ry~ 1.13 x 1073 m, Dy ~ 2.26 x 107 m.

. Validity of the inertial approximation (quantitative check).

The inertial (Torricelli) form Q = MAg\/2gh is derived assuming inertia in the orifice
dominates viscous stresses there; a common check is the Reynolds number based on
the jet /orifice diameter and the jet velocity. Use the initial conditions (largest velocity
and therefore largest Reynolds):

Initial jet velocity (approximate) at h = Hy:
Uy = M\/29H,.
Numerically (with A = 0.6 and Hy ~ 0.1420 m),
Up ~ 1.00 m/s.
Characteristic length for the jet /orifice is the diameter Dy = 2Ry & 2.26 x 1073 m. For
water (take p ~ 1000 kg/m?® and pu ~ 1 x 1072 Pa - s) the orifice Reynolds number is

_ pUpgDg 1000 x 1.00 x 2.26 x 1073

~ 3
Reoriﬁce - 1 % 10_3 ~ 2.26 x 10°.

This is well into the inertia-dominated regime (Re > 1), so viscous stresses in the ori-
fice are small compared with inertia and the Torricelli-type formula with a discharge
coefficient is appropriate. The chosen discharge coefficient A = 0.6 reasonably accounts
for contraction /energy losses and brings the simple model into good quantitative agree-
ment with realistic outflow.

Additional remarks.

o The discharge coefficient A is important; reducing A (more losses) increases the
required hole size for a given time. Typical orifice values for thin-walled sharp-
edged holes are A ~ 0.6-0.8, while long thin pipes would have much smaller
effective \.

« The quasi-steady assumption (that the instantaneous Torricelli formula applies
while h(t) slowly changes) is justified when the time scale for adjustment of the
jet is much shorter than the drainage time; here Uy/Hy ~ 1/0.14 ~ 7 s7! so the
jet adjusts in fractions of a second whereas the drainage time is minutes.
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o If a more accurate prediction is required one could account for unsteady Bernoulli
corrections, viscous head losses in the hole, or energy loss in the free jet; these
effects are partially captured by a measured .
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