
CBE 30355 Transport I Midterm Exam
October 16, 2025

1 Solution: Momentum balance in the wake-traverse
experiment

Assumptions and conventions

• Steady, incompressible flow of density ρ.

• Flow is two-dimensional in the x-y plane; quantities given are per unit length in the
z-direction (into the page). We will therefore quote forces as F/L.

• Inlet (left) velocity is uniform U across the channel height 2h. Outlet (right) velocity
is u(y) (non-uniform) for −h ≤ y ≤ h.

• Inlet pressure is p0 (constant on the inlet face); outlet pressure is pe (constant on the
outlet face).

• Side (top/bottom) friction and shear on the dashed control-surface walls are neglected.
Body forces (gravity) are neglected in the x-momentum balance.

• Define Fcyl as the force exerted by the cylinder on the fluid in the positive x-direction.
By Newton’s third law the force exerted by the fluid on the cylinder (drag on the
cylinder) is F = −Fcyl. We will present the final expression for F/L.

a. Mass (volume) conservation.

Steady incompressible mass conservation (per unit depth) gives

U(2h) =
∫ h

−h
u(y) dy.

This expresses that the volumetric flow rate per unit depth at the inlet equals that at
the outlet.

b. Integral momentum balance (in words).

For the chosen control volume (dashed box surrounding the cylinder): “The net rate of
x-momentum flux leaving the control volume minus the rate entering equals the sum of
the external forces acting on the fluid inside the control volume in the x-direction.” The
external forces here are pressure forces on the inlet and outlet faces and the mechanical
force the cylinder exerts on the fluid (we neglect wall shear on top/bottom and any
body forces in x). In steady flow the momentum accumulation term is zero.

c. Integral expression for the drag per unit length F/L.
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Write the integral x-momentum balance for steady flow. Sum of forces on the control
volume in the x-direction equals the net outflow of x-momentum:

∑
Fx = ρ

(∫
Aout

u2 dA −
∫

Ain

U2 dA
)

.

Evaluate each term (unit depth into the page so dA = dy):

• Pressure force on the inlet face (left): the external pressure p0 pushes the fluid to
the right, giving a positive contribution

Fp,in = p0(2h).

• Pressure force on the outlet face (right): the external pressure pe acts on the right
face pushing left, so its contribution to the sum-of-forces (positive to the right) is

Fp,out = −pe(2h).

• Force of the cylinder on the fluid (unknown): Fcyl (positive to the right by sign
convention).

• No other x-directed forces (top/bottom wall shear neglected).

• Momentum flux terms:∫
Aout

u2 dA =
∫ h

−h
u(y)2 dy,

∫
Ain

U2 dA = U2(2h).

Thus the momentum balance becomes

p0(2h) − pe(2h) + Fcyl = ρ

(∫ h

−h
u(y)2 dy − 2h U2

)
.

Solve for Fcyl:

Fcyl = ρ

(∫ h

−h
u(y)2 dy − 2h U2

)
− 2h (p0 − pe).

Recall the drag on the cylinder (the force exerted by the fluid on the cylinder) is
F = −Fcyl. Therefore the drag per unit length is

F

L
= 2h (p0 − pe) + ρ

(
2h U2 −

∫ h

−h
u(y)2 dy

)
.

Remarks

• The first term, 2h(p0 − pe), is the net pressure contribution (inlet minus outlet)
acting on the control-volume faces. The second term is the difference in streamwise
momentum flux (inlet minus outlet).
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• Using mass conservation 2h U =
∫ h

−h u(y) dy one can manipulate the momentum-
flux term if desired, but in general the nonuniform u(y) is left as the integral
shown above.

• Sign interpretation: with the boxed convention F/L is the force of the fluid on
the cylinder in the positive x-direction. If F/L > 0 the fluid pushes the cylinder
downstream; typically for a fixed cylinder in a rightward flow the drag resisting
the flow corresponds to a negative x-force on the fluid so the fluid-on-cylinder
drag (as commonly reported) will have the opposite sign depending on the chosen
sign convention.

2 Flow Resistance in Membranes: Unidirectional Flows
Assumptions. Steady, incompressible, axisymmetric, fully-developed laminar flow in straight
cylindrical pores of length (membrane thickness) h. Entrance/exit and pore–pore interac-
tion effects are neglected. Fluid viscosity is µ (subscripted where needed). The membrane
porosity (open area fraction) is ϵ.

a. Flow through a single cylindrical pore (from Navier–Stokes).

Start from the z-momentum equation in cylindrical coordinates. Under the stated
assumptions (steady, axisymmetric, no swirl, fully developed ∂/∂z = 0 for uz except
via pressure gradient, and negligible body forces)

0 = −dp

dz
+ µ

[
1
r

d

dr

(
r

duz

dr

)]
,

where uz(r) is the axial velocity and dp/dz is constant along the pore.

Define G ≡ 1
µ

dp
dz

(constant). Multiply by r and integrate:

d

dr

(
r

duz

dr

)
= Gr =⇒ r

duz

dr
= Gr2

2 + C1.

Regularity at r = 0 requires C1 = 0, so

duz

dr
= Gr

2 .

Integrate once more:
uz(r) = Gr2

4 + C2.

No-slip at the wall uz(a) = 0 gives

C2 = −Ga2

4 ,

hence
uz(r) = G

4 (r2 − a2) = 1
4µ

dp

dz
(r2 − a2).
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If the pressure drop across a pore of length h is ∆p = pin − pout, then dp/dz ≈ −∆p/h,
and the axial profile may be written as the familiar Poiseuille form

uz(r) = ∆p

4µh
(a2 − r2).

The volumetric flow through one pore is

Qpore =
∫ 2π

0

∫ a

0
uz(r) r dr dθ = 2π

∆p

4µh

∫ a

0
(a2 − r2)r dr

= 2π
∆p

4µh

[
a4

4

]
= πa4

8µ

∆p

h
.

Thus the single-pore conductance scales with a4 (Hagen–Poiseuille law).

b. Permeability for two pore sizes occupying specified surface fractions.

Let the membrane open-area fraction in pore class i be ϵi (i = 1, 2), so ϵ1 + ϵ2 = ϵ.
The number of pores of class i per unit membrane area is

ni = ϵi

πa2
i

.

Each pore of class i has flow Qpore,i = πa4
i

8µ

∆p

h
, so the contribution to the superficial

velocity (flow per unit membrane area) from class i is

Ui ≡ Qi

A
= niQpore,i = ϵi

πa2
i

· πa4
i

8µ

∆p

h
= ϵia

2
i

8µh
∆p.

Summing the two classes,
U = ∆p

8µh

(
ϵ1a

2
1 + ϵ2a

2
2

)
.

The problem statement defines permeability K via

Q

A
= U = K

∆p

µ
.

Comparing with the expression above yields

K = 1
8h

(
ϵ1a

2
1 + ϵ2a

2
2

)
.

This is the desired expression for K (note it scales like ϵia
2
i /h and is independent of µ

by construction of the chosen normalization).
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Special case: equal surface-area occupation. If the two pore classes occupy
equal fractions of the open area, i.e. ϵ1 = ϵ2 = ϵ/2, then

K = ϵ (a2
1 + a2

2)
16 h

.

c. Fraction of total flow through larger pores when a2 = 2a1.

With equal surface-area occupation (ϵ1 = ϵ2) the superficial flux contributed by class
i is proportional to ϵia

2
i , so the fraction of total flow going through class 2 (the larger

pores) is
U2

U
= ϵ2a

2
2

ϵ1a2
1 + ϵ2a2

2
.

With ϵ1 = ϵ2 and a2 = 2a1,

U2

U
= a2

2
a2

1 + a2
2

= (2a1)2

a2
1 + (2a1)2 = 4

1 + 4 = 4
5 .

Thus
80% of the total flow passes through the larger pores.

Remarks and limitations.

• The derivation assumes independent parallel cylindrical conduits. Real membranes
may be tortuous, connected, or have pore-size distributions that violate the simple
area partitioning used here.

• Entrance/exit losses, inertia (nonzero Reynolds number), slip, and pore roughness are
neglected; these effects can alter the prefactors and effective scaling.

• The strong dependence of single-pore flow on a4 (but permeability on a2 after area-
weighting) shows large pores disproportionately increase overall membrane permeabil-
ity.

3 The Clepsydra of the Ancient Greeks — Solution
Given. Conical bowl with internal cone angle 60 degrees so that the fluid volume and
height are related by

V (h) = π

9 h3.

Small circular hole at the cone apex of radius R0 (area A0 = πR2
0). Discharge coefficient λ

(accounts for contraction and losses). Gravity g acts downward. Initial volume V0 (equiva-
lently initial height H0 via V0 = πH3

0 /9).

We treat the outflow as inertia-dominated (Torricelli type) with losses lumped into λ so that
the volumetric outflow is

Q = λ A0

√
2gh .
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a. Differential equation for height (inertial scaling).

Mass (volume) conservation for the bowl:

dV

dt
= −Q.

Differentiating V = π

9 h3 gives

dV

dh
= π

3 h2, so dV

dt
= π

3 h2 dh

dt
.

Set this equal to −Q:
π

3 h2 dh

dt
= −λA0

√
2gh.

Solve for dh/dt. Noting
√

h = h1/2 and grouping constants, we obtain

dh

dt
= −

(
3λA0

√
2g

π

)
︸ ︷︷ ︸

C0

h−3/2.

Thus the governing ODE is

dh

dt
= −C0 h−3/2, C0 = 3λA0

√
2g

π
= 3λR2

0
√

2g .

b. Non-dimensionalization and characteristic time scale.

Let the initial height be H0 (obtained from V0 by H0 = (9V0/π)1/3). Introduce dimen-
sionless height and time

H∗ = h

H0
, τ = t

tc

,

with an as-yet-unspecified characteristic time tc. Substitute h = H0H
∗ into the ODE:

H0

tc

dH∗

dτ
= −C0 (H0H

∗)−3/2 = −C0H
−3/2
0 (H∗)−3/2.

Choose the characteristic time to remove prefactors on the right:

tc ≡ H
5/2
0

C0
.

With this choice the dimensionless ODE becomes
dH∗

dτ
= −(H∗)−3/2.

Thus a convenient characteristic drainage time (scale) is

tc = H
5/2
0

C0
= H

5/2
0

3λR2
0
√

2g
.
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c. Solve for the dimensionless drainage time t∗
d.

The dimensionless ODE
dH∗

dτ
= −(H∗)−3/2

can be integrated analytically. Multiply both sides by H∗ 3/2 and use

d

dτ

(
H∗ 5/2

)
= 5

2H∗ 3/2 dH∗

dτ
.

Hence
d

dτ

(
H∗ 5/2

)
= −5

2 .

Integrate from τ = 0 (when H∗ = 1) to arbitrary τ :

H∗ 5/2(τ) = 1 − 5
2 τ.

The drainage (empty) time corresponds to H∗ → 0, so set the left-hand side to zero
and solve for τd:

0 = 1 − 5
2 τd =⇒ τd = 2

5 .

Thus the dimensionless drainage time is

t∗
d = τd = 2

5 .

The actual drainage time is therefore

td = tc t∗
d = 2

5
H

5/2
0

3λR2
0
√

2g
.

(Equivalently one can combine constants and write td = (2/5)H5/2
0 /C0.)

d. Numerical design: find hole size for V0 = 1 L and td = 5 min with λ = 0.6.

First compute the initial height H0 from V0 = 1.0 L = 1.0 × 10−3 m3:

H0 =
(9V0

π

)1/3
.

Numerically,

H0 ≈
(

9(1.0 × 10−3)
π

)1/3

≈ 0.1420 m (about 14.2 cm).

Rearrange the expression for td to solve for R0:

td = 2
5

H
5/2
0

3λR2
0
√

2g
=⇒ R2

0 = 2
5

H
5/2
0

3λ
√

2g td

.
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Using td = 5 min = 300 s, λ = 0.6, and g = 9.80665 m/s2,

H0 ≈ 0.1420248 m,

R0 ≈ 1.128 × 10−3 m = 1.128 mm.

So the hole radius must be about 1.13 mm (equivalently diameter about 2.26 mm) to
achieve a 5-minute drainage time with the given discharge coefficient.

R0 ≈ 1.13 × 10−3 m, D0 ≈ 2.26 × 10−3 m.

e. Validity of the inertial approximation (quantitative check).

The inertial (Torricelli) form Q = λA0
√

2gh is derived assuming inertia in the orifice
dominates viscous stresses there; a common check is the Reynolds number based on
the jet/orifice diameter and the jet velocity. Use the initial conditions (largest velocity
and therefore largest Reynolds):

Initial jet velocity (approximate) at h = H0:

U0 = λ
√

2gH0.

Numerically (with λ = 0.6 and H0 ≈ 0.1420 m),

U0 ≈ 1.00 m/s.

Characteristic length for the jet/orifice is the diameter D0 = 2R0 ≈ 2.26×10−3 m. For
water (take ρ ≈ 1000 kg/m3 and µ ≈ 1 × 10−3 Pa · s) the orifice Reynolds number is

Reorifice = ρU0D0

µ
≈ 1000 × 1.00 × 2.26 × 10−3

1 × 10−3 ≈ 2.26 × 103.

This is well into the inertia-dominated regime (Re ≫ 1), so viscous stresses in the ori-
fice are small compared with inertia and the Torricelli-type formula with a discharge
coefficient is appropriate. The chosen discharge coefficient λ = 0.6 reasonably accounts
for contraction/energy losses and brings the simple model into good quantitative agree-
ment with realistic outflow.

Additional remarks.

• The discharge coefficient λ is important; reducing λ (more losses) increases the
required hole size for a given time. Typical orifice values for thin-walled sharp-
edged holes are λ ≈ 0.6–0.8, while long thin pipes would have much smaller
effective λ.

• The quasi-steady assumption (that the instantaneous Torricelli formula applies
while h(t) slowly changes) is justified when the time scale for adjustment of the
jet is much shorter than the drainage time; here U0/H0 ∼ 1/0.14 ∼ 7 s−1 so the
jet adjusts in fractions of a second whereas the drainage time is minutes.
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• If a more accurate prediction is required one could account for unsteady Bernoulli
corrections, viscous head losses in the hole, or energy loss in the free jet; these
effects are partially captured by a measured λ.
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