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Closed Books and Notes 
 
Problem 1. (20 points)  Thermal and Momentum boundary layers.  It’s cold outside and 
that means drafts off of cold windows!  The cause is straightforward: the density of air 
increases as it gets colder according to the ideal gas law, and that causes a negative 
buoyant force that drags the fluid down.  In this problem you will scale the transport 
equations to determine characteristic magnitude of the heat loss from a cold window 
from scaling alone. 
 
Consider the window of height H depicted below.  We take the temperature of the air in 
the room to be T∞ and that of the window to be T0, so the characteristic temperature 
difference is just !T = -(T0-T∞).  The Navier-Stokes equation for momentum in the z 
direction reduces to: 
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For natural convection problems such as this, the pressure gradient (a source of 
momentum!) is replaced with the buoyancy term "g#(T - T∞) where # is the coefficient of 
thermal expansion (just 1/T∞ for an ideal gas, where T∞ is in °K).  The rate of heat loss 
per unit width Q/W is given by the integral of the temperature gradient at the surface, 
where k is the thermal conductivity of the air.  Scaling these equations (and the 
continuity equation!) you can determine the boundary layer thickness, the characteristic 
magnitude of the downward draft velocity, and an estimate of the rate of heat loss from 
the window without ever solving the problem!   
 
a. Render the z-momentum and continuity equations dimensionless in the boundary 
layer limit. 
 
b. Determine how the boundary layer thickness and draft velocity depend on the 
parameters of the problem. 
 
c. How large does H need to be for the boundary layer limit to be valid? 



 
d. In the boundary layer limit the problem admits a self-similar solution (it’s not a 
function of y* and z* independently, but rather a function of the similarity variable $).  
From your scaling (or via simple affine stretching – same thing!) determine $ in 
canonical form. 
 
e. By scaling the integral relation for the heat loss from the window, determine how 
Q/W depends on the parameters of the problem. 
 
f. Now for some numbers.  If !T is 20°C, the room temperature T∞ is 293°K, and the 
kinematic viscosity of air is 0.15 cm2/s, what are the values of Uc and % from your 
scaling for a window of height H = 1m? 
 
g. If our window is square (e.g., W = 1m too), and the thermal conductivity of air k is 
0.026 W/m°K, what is the scaling for the energy loss in watts?  Note that this is just the 
scaling, of course – it turns out that if you solve the whole problem (including the 
energy equation, needed to get the temperature profile) your “unknown O(1) constant” 
is about 0.5 for air (and is a weak function of the Prandtl number). 
 
Problem 2. (20 points) Lubrication – a defined flow rate problem!:  Cavitation is the 
phenomenon which occurs when the absolute pressure in a liquid reaches the vapor 
pressure, and the liquid boils.  For most liquids this is pretty close to zero.  While 
usually seen in inertial flows, it is actually most easily visualized in viscous lubrication.  
Consider the geometry depicted below: 
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Two plates of length L in contact at one edge are separated by a very small angle &.  For 
small angles the gap between the plates is given by h = & x, where x is the distance from 
the vertex.  The plates are pulled apart at some rate d&/dt.   
 
a. The fluid is incompressible (at least before cavitation occurs!) so the upward motion 
of the plate is balanced by fluid coming in from the x-direction.  Using this, develop the 
expression for the x velocity averaged across the gap (y direction) as a function of 
d&/dt, &, and x. 
 
b. Write down the equation governing the velocity distribution and pressure gradient in 
the lubrication limit for some angular velocity d&/dt and scale it. 
 



c. Evaluate the pressure distribution and develop an expression for the location xc 
where the pressure falls to zero absolute (e.g., a gauge pressure of - patm) and the fluid 
cavitates. 
 
d. Develop an integral expression for the force per unit width into the paper F/W 
(exerted at the outer edge) necessary to pry the plates apart.  (Hint: Think of torque 
balances!)  Scale it, but don’t evaluate the integral to get the O(1) number… 
 
Problem 3. (10 points)  A Simple Siphon.  Here we determine the flow rate of a siphon 
used to drain the tank depicted below.  Water fills a tank to the height shown, and the 
siphon consists of 16 meters of 4cm ID pipe (it is filled with water too!). 
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a). Neglecting all frictional losses, what is the flow rate?  Give your answer in liters/s. 
 
b). Modify your answer by accounting for the head losses in the pipes and fittings.  
Correlations for friction factors in pipes and fittings are given below.  You will probably 
need to do a couple of iterations to get the friction factor right.  It helps to start the 
iterative calculation of the velocity with a reasonable guess for ff since you know the 
other parameters.  K values and head loss expressions are given below. 
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   ff = 16
Re   ;  Re < 2100    ff ! 0.0791

Re1 41 4
  ;  3000 < Re < 10 5 
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= 4.0 log 10 Re ff – 0.40   ;  Re > 3000 

 
Fitting K value 

sudden contraction 0.45 
sudden expansion 1.0 

90° elbow 0.7 
 



Problem 4. (10 points) Pump Curves: 
 
a.  It is desired to pump 30 liters/sec of water from a pond to an elevation of 15 meters.  
How much head loss can we tolerate before the pump CP80i is no longer recommended 
for the job? 
 
b.  What is the RPM required to do the job? 
 
c.  What is the useful mechanical work done by the pump on the fluid? 
 
d.  What is the efficiency of the pump at the operating conditions? 
 
e.  How much head loss can we tolerate in the piping leading to the pump before it 
cavitates? 
 
f.  If we are pumping hot water at 600C (vapor pressure of 150mmHg vs. that at 250C of 
23.7mmHg), how does your answer to part e change? (OK, a hint: mercury has a density 
of 13.56 times that of water…) 
 

 


